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Abstract—In this paper we compare three distinct asymptotic analyses for the probability distribution for
strength of a certain class of fibrous materials. This class, which contains composite materials and twisted
yarns and cables, is characterized by strong, mechanical interaction among neighboring fibers as is
generated by a binding matrix or by transverse frictional forces. The model is the chain-of -bundles model,
and we focus mainly on a planar geometry and a simple type of local load-sharing among fibers in a
cross-section wherein the load of a failed fiber is shifted in equal portions to its two nearest flanking
survivors. Through the study of typical examples we find that the results of the three methods all
underscore the importance of the Weibull distribution for modeling composite strength, and are in excellent
numerical agreement despite their differing analytical form. This is fortunate because only the two least
accurate of the analyses show promise of being extended to more general three-dimensional geometries and
local load-sharing rules of interest in applications. The paper lays the groundwork for considering such
extension in future papers.

1. INTRODUCTION

In this paper we consider the strength of fibrous materials which have strong, mechanical
interaction between neighboring fibers as would be generated by a binding matrix or friction.
Composite materials, and twisted yarns and cables are examples. Randomly occurring flaws
cause the fibers to have highly variable strength so that a complicated mechanism of local load
redistribution around fiber breaks becomes involved in determining the overall material
strength. Indeed the strength of such materials does not follow a simple “‘rule of mixtures.”

In the past, various attempts have been made to develop micromechanical models of the
statistical failure process. Almost exclusively the model considered has been the chain-of-
bundles model under various versions of local load-sharing wherein load concentration factors
are prescribed for fibers adjacent to broken fibers. We retain this model here. Zweben{1]},
Zweben and Rosen[2), Scop and Argon{3] and Argon[4] all considered versions of this model,
and derived some interesting approximate results. Unfortunately, the model, while easily
described, has proven very difficult to analyze, and exact results have been possible only for a
few special cases involving very few fibers[5, 6]. Present computer capabilities do not permit
extending these exact analyses to the typical case where the number of fibers is large.

Recently, attention has turned to the development of asymptotic methods, and three distinct
asymptotic analyses have emerged. The first of these methods, developed by Harlow and
Phoenix[7-10] is a recursion analysis for sequences of bundles of increasing size, and considers
the event that k adjacent fiber breaks (k-failure) occur somewhere in the material. The notion is
that if k is chosen sufficiently large, k-failure is equivalent to total failure.

The recursive technique has yielded a simple mathematical structure for the probability
distribution of composite strength, and is extremely accurate. Unfortunately the most important
functions that arise must be calculated numerically, a process which rapidly becomes tedious
and expensive as k increases. Furthermore the method has been applied successfully only to
the simplest geometries and load-sharing rules; unrestricted extension to more general settings
has so far proved impractical{11, 12]. Nevertheless the recursive technique has served as a
“benchmark” for evaluating other asymptotic techniques, and has yielded great insight.
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The second of the asymptotic analyses, developed by Smith[13, 14], also considers the event
of k-failure in the fibrous material. Certain reasonable assumptions are made about the lower
tail of the distribution function for fiber strength, and a limiting Weibull distribution is obtained
for material strength. The method shows promise of being applicable to general geometries and
types of local load-sharing, and yields results which have an appealing form.

Unfortunately this second approach has serious drawbacks. First, the results are sensitive to
the numerical choice for k for which only rough procedures for its determination are available.
Second, the use of certain inequalities in the analysis precludes the direct assessment of the
errors in the asymptotic approximations. Third, certain key constants become difficult to
express and calculate as k increases.

To overcome the above shortcomings Smith(13,15] has developed a third asymptotic
analysis which again considers the event of k-failure but under the assumption that the
variability in fiber strength is small. It emerges that a certain value of k becomes critical, that is,
a sequence of adjacent fiber breaks once reaching this length, suddenly grows catastrophically.
With this approach, some simple approximating distributions for strength are obtained.

The main advantages of this third analysis are that a straightforward method is obtained for
evaluating the critical k, the key constants are easily expressed, and the approach shows
promise of being extended to more general settings. The major weakness is that the accuracy of
the resulting approximations cannot be evaluated directly.

The purpose of this paper is to compare in depth the three asymptotic analyses and their
results. We will pay special attention to the impact of certain assumptions, to the sources of
error in the resulting approximations, and to the consistency of the final predictions in typical
material settings. We will work with a simple planar geometry and a simple type of local
load-sharing. In typical material settings the numerical predictions of the three methods will
turn out to be in very close agreement, and many of the key quantities in each analysis will turn
out to be intimately related. By considering all three analyses simultaneously, we will be able to
determine the most useful of the various approximations, and we will appreciate why these
approximations perform as well as they do in situations important in applications. The
groundwork will then be laid for extending the various approximations to more general and
realistic geometries and fiber load-sharing settings. Experimental verification of the predictions
of the model is being carried out, and will be reported on elsewhere.

In Section 2, we describe the model and basic assumptions. Section 3 discusses the main
results of the recursion analysis; this will be called Analysis I. In Section 4 we consider a
motivating example under assumptions for fiber strength which span the range of practical
interest. Sections 5 and 6 describe the two asymptotic analyses which will be referred to
respectively as Analyses II and IIl. Important technical ideas in the analysis are given in the
Appendix. In Section 7 we give numerical results which bring out clearly the relations among
the three analyses.

2. THEMODEL AND REVIEW OF EARLIER ANALYSIS

The fibrous material is viewed as a planar structure of n parallel fibers, and this structure is
conceptually partitioned into a series of m short sections called bundles, each with n fiber
elements as shown in Fig. 1. The length of each bundle is the “ineffective length” & and the
material length is thus | = m§. The bundles are assumed to be statistically independent, and the
strength of the fibrous material is that of its weakest bundle. We will measure the strength on a
load per fiber basis; that is, the strength of the structure is the total load it can support divided
by the number of fibers n.

Assumptions on fiber strength

We assume that the strengths of the mn fiber elements are independent and identically
distributed random variables with common distribution function which we denote by F(x),
x Z 0. Two particular versions of F(x) will be considered. The first is the Weibull distribution
function

F(x)=1—exp{-(x/xs)’}, x=0 .1
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Fig. 1. Fibrous material with structure of a planar tape. The structure is partitioned into m short bundies,
each with n fiber elements. Failure is localized within bundles.

and the second is the power distribution function
F(x)=(x/x;)’, 0=x=1x,; (2.2)

where p and x; are the shape and scale parameters respectively in each case. More broadly, we
assume F(x) has the form

F(x)=G(x/x3)*), x=0 2.3)

where the function G(y), y 20 is a continuous distribution function with the special properties
G(y)~y as y | 0 and 1-G(y) <D exp(- ay®?) for y =0, where « >0, 8>0 and D >0 are
constants. (Throughout the paper *“ ~* will mean that the ratio of the two sides tends to one
under the specified condition.} This last property ensures that the upper tail of F(x) is not too
long thus avoiding the possibility of too many exceptionally strong fibers. In reality, no fiber can
exceed its intrinsic atomic strength, that being bounded. Notice that G(y)=1—-¢7", y 20 in the
Weibull case (2.1) and G(y) =y, 0= y =1 in the power case (2.2).

A few remarks are in order about these assumptions. The experimental measurement of the
strength of fiber elements of length & is nearly impossible by conventional methods because § is
about 10 fiber diameters in magnitude. The gage length A in typical tension tests is about 100
times longer than 8, and by our assumptions such fibers will appear empirically to have a
Weibull distribution with shape parameter p and lower scale parameter (8/A)"x;s. In such
experiments, the range for the shape parameter p is between 5 and 15 (and this is very
important in the asymptotic analysis later). The key point is that p and the lower tail of F(x) for
single elements are easily estimated by conventional procedures but only a very small
proportion of the test data will be near x;. Thus the upper tail of G(y) can be difficult to
estimate, and one may have difficulty choosing say between the Weibull form (2.1) and the
power form (2.2). We will see later that it is the lower tail of F(x) which is most important, and
the precise behavior of F(x) near x; is typically of lesser importance.

Bundle geometry and local load-sharing rule
We consider each bundle to be a planar arrangement of paralle! elements. If the bundle load
is x (per fiber), a surviving fiber element carries load K,x where

K., =1+12, r=12,..., 2.4)

and r is the number of consecutive failed fiber elements immediately adjacent to the surviving
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element (counting on both sides). At the same time a failed fiber element carries no load. We
call the K, load concentration factors.

The load sharing rule just described is admittedly an idealization of the true situation in a
fibrous material. However, we believe it captures the essential features of the problem.

The bundles described above are referred to as linear incomplete bundies; they are linear
because the elements form a linear array, and they are incomplete because the load-sharing rule
is nonconservative, that is, the total load does not quite sum to nx. The latter difficulty arises
when k consecutive broken elements occur at a bundle edge, and no element is available at the
outside to support the shed load (k/2)x. It turns out that such boundary effects rapidly become
unimportant as n increases, and in the interest of simplicity we do not model them.

The basic probability distributions

We let G,(x), x =0 denote the distribution function for the strength of a single bundle, and
let H,, ,(x), x 2 0 be the distribution function for the strength of the fibrous material. Since the
weakest of the n bundles determines the strength of the structure and the bundles are
statistically independent, we have

H, (x)=1-[1-G.(x)]", xz0. | (2.9

The difficult task is clearly to determine G,(x), and thus, most of our analysis will focus on a
single bundle.
It has proven very fruitful to consider the event of k-failure which is the event

AM(x) = {k or more failed fiber elements are adjacent somewhere
in the bundle under the load x};

its complement is denoted as A¥(x). For this event we define
GY¥(x)= P{AN(x)}, x=0. (2.6)

Note that A¥)(x) is necessary but not sufficient for bundle failure, and thus, G)(x) is an upper
(conservative) bound on G,(x), x20. For the fibrous material we let H% (x) be the dis-
tribution function for k-failure, that is, the probability of occurrence of the event A%(x) in at
least one of its bundles. Thus

H¥ (x)=1-[1-G%¥x)", xz0. Q.7

This concept of k-failure turns out to be very useful because if k is properly selected, then
k-failure and bundle failure are virtually equivalent. Under our earlier assumptions on F(x) a
fiber element has almost no chance of surviving loads in excess of x;. Thus an element flanked
by k adjacent broken elements is sure to fail if the bundle load x exceeds x,/ K, and the failure
sequence will propagate catastrophically. Such a value of k will be called critical, and the
sequence of adjacent failed elements, a critical failure sequence. (The notion of critical k
becomes firm as p increases.) Of course, H%,(x) 2 H,, .(x) for x 2 0.

Review of earlier analyses

Harlow and Phoenix[5, 6] were apparently the first to perform rigorous calculations on the
exact distribution function for strength H,, ,(x) in the setting of composite materials. While
their results yielded important insight into the possible significance of k-failure and of the
existence of a basic weakest link structure, they found that direct computation was possible
only for small bundles. With current computer capacity the practical limit is n = 12, and n = 15
seems out of the question because of the astronomical growth in the possible failure sequences
with n.

The next advance came with the recognition of the importance of k-failure, and Harlow and
Phoenix [7-10] developed the recursion analysis (mentioned earlier as Analysis I) for calculating
G'™(x) and H%,(x). The algorithms work in principle for any k, but again the practical limit
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happens to be k =12. Fortunately k =12 is more than sufficient for practical composites.
Harlow and Phoenix considered the simple geometry and local load-sharing rule of this paper.
Pitt and Phoenix[11, 12] were able to extend the recursive analysis to certain three-dimensional
arrangements for k = 2 and more realistic local load-sharing rules in two dimensions, for k = 3;
in principle the method may be extended to k > 3.

While the results of the recursive method are virtually exact, the method itself is cum-
bersome thus motivating a search for simpler techniques. To this end, Smith{13-15] has
developed two asymptotic approaches which we now describe.

The first asymptotic approach (Analysis II) fixes k and p, and lets n - . This limiting
process is similar to that of Analysis I except that no provision is made for evaluating the errors
at any fixed n. In fact, a limiting Weibull distribution is obtained which at first sight appears not
to be very useful because, in reality, the critical k tends to increase with n. In[14], the approach
was extended by allowing k to increase with n but not quite fast enough to keep up with the
inherent increase in the critical k.

The second asymptotic approach (Analysis III) is based on the observation that certain key
issues arising out of Analysis II may be resolved when p is large. In particular the notion of a
“critical” value of k becomes firm and moreover, the scale constant arising from the ap-
proximation of Analysis II, which in general is quite difficult to compute, may be readily
approximated. Based on these ideas, a formal limit theorem was given under the conditions
n - » and p - « simultaneously such that (In(mn))/p - ¢ where ¢ is a positive constant. The
idea behind the limit theorem is not that this limiting operation actually takes place in any
physical sense, but that an approximation is obtained which may be expected to perform well in
application15, where n is typically large and p is typically in the range-5-15.

In what follows, our goal is to compare the results of Analysis I of Harlow and Phoenix with
those of Analyses II and III of Smith. The resulting accuracy of the latter two asymptotic
methods will point to their potential utility in the more general settings.

As a final remark, one might argue that the concept of the ineffective length & is not realistic
because the value itself changes with load x. One may also argue that the concept of the load
concentration factor K; is a gross oversimplification of the truth in view of the actual shape of
the stress field on surviving fibers adjacent to breaks. However, Harlow and Phoenix[8] show
that these quantities can be defined in a more realistic way, and that the results of the model are
not very sensitive to these refinements.

3. SUMMARY OF ANALYSISI(RECURSION ANALYSIS)

A recursive procedure was developed in[8, 9] to compute G$(x) for successive values of n
when k and x are fixed. In principle, the method allows G%¥!(x) to be calculated exactly for any
value of n and for any k for which the required recursion matrix is small enough to be handled
by the computer. This recursion matrix grows rapidly as k increases (being of size 2* - 1 by
2X~ 1) so that in practice the method is restricted to k < 12.

It was shown that G'*)(x) has the structure

G¥(x)=1-[1- WH@)"[#M(x) + o(x)], x=0, 1sksn, 3.1)

where the functions W*)(x), #'*)(x) and o)(x) are defined as follows:

(1) The function W™X(x) is the characteristic distribution function for k-failure. It is defined
as one minus the largest eigenvalue of the recursion matrix, and must be computed numerically
given F(y), y20.

(2) The function 7™*)(x) is a boundary term which reflects load-sharing irregularities at the
bundle edges. Under our earlier assumptions on F(x) it turns out that #™*}(x) - 1 as x = 0, and
7™%(x) does not differ significantly from 1 over all values x 20 of interest. For practical
purposes 7*}(x) may be taken as 1 except when n is very small.

(3) The function o%X(x), x 20, is a size residue term. It may be shown that o™(x) - 0 as
n = or x - 0, and that it decreases geometrically fast as n is increased. A detailed study of
the behavior of o)(x) is given in [10). The calculation of 0'!(x) for higher k, though possible in
principle, is difficult because it is so small. For practical purposes this term may be neglected.
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Let

XKW (x)=1-[1-WH)I™, x20, Isk=n 3.2)

In[9)], the following result is proved:

Result 1
Under our earlier assumptions on F(x), x 20,
lim sup [H &),(x) - %5,(x)| = 0. (33
n-x x20

Moreover, numerical calculations show the error to be negligible for n as small as 10.

The import of these results is that, once k is fixed, the required quantities may be
computed very accurately. There remains the question of how to choose k in order to obtain a
good approximation to H,, ,(x). It appears, however, that from the point of view of practical
calculation, this does not cause any difficulties, for the following three reasons:

(1) If there is finite xn,x such that F(x..) =1, then H ﬂ,ﬂ’,.(x) = H,, ,(x) for all k such that
Kix > Xmax. It is usually the case that this inequality holds for some k = 12 so that the foregoing
procedures may be applied exactly as described.

(2) Even if there is no such x,,, but F satisfies (2.3) with p not too small, the same
procedure, with x..,, replaced by x,, appears to give very good results. This is because (2.3) and
the associated assumptions imply that, for most cases of practical interest, F(y) is very close to
1 when y > x,, so that the probability of the bundle experiencing k-failure (where K,x > x;, x
being the load per fiber) but not failing is very small.

(3) It may be proved that the limits

W(x)=lkim wWi(x), 1r(x)=zim 7%(x) 3.9

exist for each x = 0. Moreover, numerical results show that the convergence in (3.4) is very
rapid. This leads to the intriguing possibility that a result analogous to (3.1) may hold for G,(x)
with W(x), m(x) substituted for W¥)(x), #™*)(x) respectively.

A conjecture
Let

K n(x)=1-[1=W@)I™, xz0. (3.5)

Under our earlier assumptions on F(x) we conjecture that

lim sup |Hy, x(x) = ¥ a(x)| = 0, (3.6)

n-x x20

for fixed m or for any sequence m = ». No proof of this conjecture is known but the numerical
evidence for it is very strong. It appears that p = 3 is sufficient for the result to be useful[10].
Result 1 indicates that k-failure in a large fibrous material is essentially a “‘weakest link”
phenomenon where the mn “links™ have distribution function W™*)(x), x 2 0. The conjecture
suggests that the same is true for total failure with characteristic distribution function W(x).
To use the above results, one should calculate W(x), x =20, for as large a k as is
practicable. Then if n is large

Hy o(x)=1-[1- W¥x)™ G

will be an accurate and useful approximation over the range x > x,/K,. An example and further
comments on applications appear in Section 7.
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4. AMOTIVATING EXAMPLE: THREE-FIBERBUNDLES

The later results will depend on certain lower-tail approximations to GM(x) as
x - 0. In order to get an appreciation for these approximations, it is instructive to consider the
case n =3, k=1,2,3 for which everything can be worked out exactly.

Let X,, X; and X; denote the strengths of the three fibers. We need the load concentration
factors, K, and K,. The event “bundle fails under load x per fiber’” may be decomposed into
mutually exclusive events {X,=x, X;=x, X5=x}, {X,=x, X;=x, x<X3=Kyx}, x< X, =
K.x, X;=x, Kix < X52 Kyx}, and so on. Summing the probabilities of these events yields
Gi(x) = F}(x) + FA(x)[F(K,x) — F(x)] + [F(K,x) - F(x)]F(x)[F(Kx)— F(Kx)] + - - - leading to
the final result

Gi(x) = 4F(x)F(K x)F(K,x) - F(x)F(K x)
- FA(x)F(Kx)- 2F(x)F(K x)+ F'(x), xz0. 4.1

This is also G$Y(x). By similar arguments we find

G¥(x) = 4F(x)F(K,x) - 2F%x) - F(x)FK x) - 2F*(x)F(K \x)
+ FA(x)F(K,x)+ F(x), xZ0, 4.2

G'Y(x)=3F(x)-3Fx) + F(x), xz0. (4.3)

In Fig. 2, these distributions have been plotted where F is the Weibull distribution (2.1) or
the power distribution (2.2). The values p = 5 and p = 15 span the range of practical importance.
The scaling is that of Weibull probability paper being linear in In(— In(1 — p)} vs In(x) where p is
cumulative probability. On this scaling the Weibull distribution plots as a straight line. We list
several important observations.

Observation 1 . .

Weibull vs power F(x) There is very little difference between the curves for the Weibull and
power distributions, especially in the lower-tail region of interest. This is because the two
distributions are asymptotically equivalent as x - 0.

“Observation 2
Critical loads Transition points in the various distributions appear near x = x5/ K, and
x = x5/K,. For example, G5(x) and GP(x) are virtually the same for x > x;/K, and indeed are

identical under (2.2). For this reason k =2 is termed the critical failure sequence size when
1/K.<x < /K.
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Fig. 2. Distribution functions associated with the failure of a fibrous material with three fibers. Results
under the Weibull and power distributions for element strength are compared.
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Observation 3

Relation between H,, (x) and G.(x) The distribution function H,, ,(x) is shown for n =3,
m = 1000. The scale for H,, , is simply that for G, shifted downward by la(m). The fibrous
material (m = 1000) is much weaker than a single bundle, the reduction in strength being more
severe for small p. Over the range of interest, k = 3 is critical for p = 5 but k =2 is critical for
p=15.

Observation 4

The Weibull envelope Notice that each of the three distributions G{'(x), G2(x), G(x) plots
to a straight line in the lower tail. If these straight lines are continued to infinity then G,(x) is
very well approximated over its whole range by the lower envelope of the three lines. Each of
the three lines corresponds to some Weibull distribution and their lower envelope is called the
Weibull envelope.

In order to understand Observation 4, we must study eqns (4.1)44.3) in more detail.
Asymptotically as x >0, we may replace F(x) by (x/xs)* whereupon (4.1)-(4.3) reduce to

Gs(x) = dy(x/xs)*
GPx) = 2dy(x/x5)" +0(x*),
GYY(x) = 3d,(x/x5)" + 0(x?),

where
di=1, dy=2K{—1, d;=4KK5-K¥-K5-2K%+1. (4.9)

Note that, apart from the load concentration factors K,, K, (which are taken as given), these
constants depend only on p, and will be denoted d,(p), dx(p), dx(p) where appropriate.
The result is that we have an approximation

GM(x) ~ (- k)di(p)(x/xs)*, k=1,2,3, 4.5

valid as x » 0. In view of the aforementioned near-equivalence of the Weibull and power
distributions, this may also be expressed as

GH(x) ~ 1 - exp{ - (4 - k)d, (x/x;)*}
=1 —exp{-(x/x¥)*}, k=1,2,3 (4.6)

where
o= x,[@-k)d "™, k=1,2,3. 4.7

Thus, we approximate GY(x) in its lower tail by a Weibull distribution with scale parameter
x4, and shape parameter kp. Observation 4 amounts to saying that the lower envelope of these
three Weibull distributions is a good approximation to G(x) over almost the whole range of x.

We now consider a different aspect of these approximations. If p is large, then both
F(K,x)/F(K,x) and F(K,x)/F(x) are much bigger than one as x - 0. This suggests we need
retain only the leading terms in (4.1) to (4.3) to yield sufficiently accurate approximations. In the

case of the power distribution (2.2), these approximations would be
GHx) = @- k)dix/x)®, k=1,2,3, (4.8)
where
dy=1, d;=2K%, d,=4KIK.. (4.9)

In Fig. 3, we have plotted G;(x) together with the approximations described by (4.8), (4.9), for
p=15.
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Fig. 3. Leading term approximations to the distribution for bundle and fibrous material strength.

Observation 5
Except in the upper tail, Gy(x) is well approximated by the envelope

G*(x) = min (4 - k)d(x/x;)*, x20. (4.10)
15ks3

This approximation is not so good for p =35, but a large improvement results in using the
Weibull envelope of Observation 4 using (4.6), but with d; in place of d, in (4.7). With this
replacement, the error is within graphical resolution for p = 5, and is much smaller for p = 15.

Summary

These results suggest that a Weibull approximation might be appropriate for G,(x) and
H,. .(x), but that this approximation is dependent on a parameter k which is the critical failure
sequence size. For m = 1000 and n = 3, the critical k is three when p =5 but only two when
p = 15. Furthermore, an approximation to the constant d,, denoted d, and based on p being
large, gives results (in terms of the Weibull approximation) which are nearly indistinguishable
even when p is as small as 5.

5. OUTLINE OF ANALYSISII
In the previous section it was shown that the distribution function G%'(x) is well ap-
proximated by the Weibull distribution defined by (4.6) and (4.7) in the lower tail. A key resuit
of Analysis II is that a Weibull approximation holds in general for G%)(x) in the lower tail. This
result is

GM(x)~1-exp{- (x/x¥, . )%}, k=1,2,...,n 5.1
as x - 0 where
x¥=x(nd)™"™, n=1,2,.... G2

The constant d, = d,(p) is given by (4.4) for k = 1, 2, 3, and in principle could be computed for any
k. In practice it has been computed for k up to 12, the range of practical interest, and some values
are given in Table 1. A more detailed table is in{14].

In cases of practical interest we will find that n is very large and k is very small so that it
makes no difference if x!,,, is replaced by x*) in (5.1); in fact, it was in this form that the
result was given in[13, 14]. Furthermore, if n is sufficiently large relative to k the Weibull
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Table 1. Comparison of the constants d, of Analysis Il and di of Analysis II1. (p = 5)

K dk 'd'k d]-(l/ (kp) a’kl/ (ko)
2 1.419 E1 1.519 E1 0.7670 0.7618
3 8.681 E2 9.720 E2 0.6369 0.6322
4 1.565 ES 1.898 ES 0.5499 0.5446
5 6.799 E7 9.226 E7 0.4861 0.4802
6 6.225 E10 9.692 F10 0.4367 0.4303
7 1.088 E14 1.985 Fl4 0.3971 0.3904
8 3.362 F17 7.325 E17 0.3646 0.3576
9 1.731 E21 4.578 F21 0.3373 0.3301
10 1.414 E25 4.608 E25 0.3140 0.3067
11 1.761 £29 7.167 E29 0.2939 0.2865
12 3.232 F33 1.663 F34 0.2764 0.2689

distribution on the r.h.s. of (5.1) accurately approximates G%*Y(x) not just in the lower tail but
over the whole range of x. Shortly we give conditions for this to be true.

The extension of (5.1) to a fibrous material consisting of m bundles of n fibers is
straightforward. The lower tail approximation to H (x) is the r.h.s. of (5.1) with x%),_.,, in
place of xI1, .. If we let N = mn be the total number of fiber elements in the material, and both

N and n are sufficiently large relative to k, then we also have
HE(x) = 1 - exp{~ (x/x{)*} (5.3)

over the whole range of x = 0. In other words, the approximation for a fibrous material is the
same as for a single bundle of N = nm fiber elements.
Formally stated, the important result of this section is as follows:

Result 2
Let k be a fixed, positive integer. Then under our earlier assumptions on F(x), x = 0 we have

lim|H %1.(x) = [1 - exp{ - (x/x )} = 0. (5.4)

n—sx

(As written this result takes m as fixed, but it also holds even when m grows with n following
some sequence m;, my,....)

In the Appendix, we give a sketch of the main ideas underlying the derivation of the above
resuit.

It is interesting to consider the question of how large N = nm must be relative to k for the
Weibull approximation (5.3) to be accurate. In[14] it is shown that if k grows with n but at a
rate such that N grows at least as fast as k*® for some constant ¢ > 1 depending on F, then
(5.3) still holds as an accurate approximation. For the Weibull and power distributions (2.1) and
(2.2) for fiber strength, ¢ can be any constant exceeding one. For example, if k =5 we only
need N to exceed 3125 but if k = 10 we need N exceeding 10'.

As yet we have not considered whether H,, ,(x) is accurately approximated by H%! (x) for
some k, and whether (5.3) will apply under these circumstances. This is considered next.

6. OUTLINE OF ANALYSISIII

Although Analysis III may be developed without any reference to Analysis II, as was done
in[15), it is most easily understood as an attempt to resolve some of the difficulties posed by
Analysis I1. Our starting point is the approximation defined by (5.3) and (5.2) using (A4) as the
definition for d,. The two key issues are

(i) the evaluation of d,

and

(i) the determination of an appropriate value of k so that (5.3) provides a good ap-
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proximation not just to H, (x) for k-failure in the fibrous material but also to H,,, ,(x) for total
failure.
The analysis hinges on p for the fibers being large so that

(xIx5)’, O0<x=x;

1, x> Xs ©.1

F(x)= {

Note that (6.1) is exact under (2.2) but more generally is a good approximation whenever F
satisfies (2.3). Thus if some load x < x; is given we have

e Ki(xIxs)y  if Kx <xs
FKp)= { 1 if Kix > x;. 62)

Given load x, define the critical value of k by the inequality
Kk..]x <x < ka. (6.3)

Note that the critical k is not defined when x = x5/K, for some k. These values of x (which
correspond to the transition points on Fig. 2) are excluded from the analysis at present.

From (6.2) we see that F(K,x) = 1 so that bundle failure is almost certain as soon as there is
a sequence of k consecutive failures. Thus the critical k defined by (6.3) corresponds to the
intuitive notion of a critical failure sequence size discussed earlier. Note that, for the time
being, our critical k is defined in terms of a given load x rather than the numbers m and n.

We now turn to the evaluation of G,(x) required for (A4). When p is large the variability in
fiber strength is small, and it turns out that, in a bundle of size k under load x < x4/K,_,, the
predominant mode of failure is of a single initial failure under load x followed by the successive
failure of neighboring elements under loads K,x, K,x, ..., K,_;x. There are a total of 2*"' ways
such a failure progression or crack can grow ([15], p. 544) and using (6.2) we obtain

Gi(x) = 2"l P (K xIxg ) . . (Ko x/x5)P (6.4)
This motivates the result that for x < xg/K,_,
Gi(x) ~ di(x/x5)* (6.5)
as p = « where
di = di(p) =2 'K \K;. .. Ki ). (6.6)

It can be shown that d, is an asymptotic approximation to d, in the sense that

lim d(p)/dy(p) =1, 6.7

p—x

but it turns out that d, is a very reasonable approximation to d, even when p is as small as 5.
As an illustration we recall the example of Section 4 and notice that (6.4) with k =3 is the
leading term of Gy(x), G)(x) of (4.8) is (6.5), and (4.9) is equivalent to (6.6).
Using d, in place of d, we may rewrite (5.1) and (5.2) in the present setting as
G¥(x) ~ 1-exp{ - (x/£",. )"} _ 6.8)
as p = © where

£ = xy[nd )" (6.9)

and-k is the critical k defined by (6.3). Note here that ** ~" has a different meaning than in
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Section 5 in that the condition is now “as p -» «" rather than “as x = 0”. However the steps
which led to (5.1) also may be modified to yield (6.8) upon noticing that (x/xs;)* » 0 and
K?/K% - 0as p > », when x <x; and i <j.

Equations (6.8) and (6.9) define the key approximation of Analysis IIl. This result was given
in a different form in[13, 15], but the two forms of the result are equivalent. The details are
given in[18).

The extension of these results to a fibrous material is straightforward because the same
arguments which lead to (5.3) may be used here also. Thus, we may write

H5(x) = 1-exp{ - (x/x}})*} (6.10)

where N = mn, n » k, and k and x satisfy (6.3). Furthermore since k is critical, H [1,(x) closely
approximates H,, ,(x).

Calculation of the critical k

One important question remains to be discussed. So far the critical k has been defined only
by (6.3) which relates k to the load x (per fiber) on a bundle or fibrous material. For the case
n =3 and m = 1000, it was argued in Section 4 that the critical k is three in the case p =S5 and
two in the case p = 15, and remained constant over the region of interest. The question then is
how to relate k to m and n within explicit reference to the load x. We study this only for the
fibrous material, since (6.10) obviously reverts to (6.8) when m = 1.

The important observation is that, when p is large, the probability given by (6.10) is
significantly different from both zero and one only if x is very close to £%. Thus, for the
purpose of determining the critical value of k, we may take x = %% in (6 3). Making this
substitution we have

dek <i[k]<x5/Kk_1. (611)

Next, we substitute for %! from (6.9) using d, from (6.6). Taking logarithms of both sides, we
reduce (6.11) to

k-
In(K,) > - ln(N)+—ln(2) %2 In(K;) > In(K, _.). (6.12)

Now suppose N and p are both large such that In(N)/p = ¢ where 0 < ¢ <. Then (6.12) is
approximately

k-1
kin(K)>c+ z In(K;) >k In(K; ). (6.13)
=1
This may be rewritten as
y(k)>c > y(k—1) (6.14)

where y(0) = 0 and y(r) is defined for the positive integers by
r—-1
y(r)=rin(K,)— 21 In(Kj), r=1,2,.... (6.15)
=

Note that because the sequence {K,rz 1} is strictly increasing, the same is true of the
sequence {y(r),r=1}.

Thus we conclude that, for large N and p, and ¢ = (In N)/p, the critical value of k may be
defined by (6.14) and (6.15), and this value used in (6.10). Henceforth, we refer to this critical
value of k as k*.

A small problem arises if y(r) = ¢ for some r. In this case k* may be defined to be either r
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or r+ 1. It may be checked that the two corresponding values of % ' are almost the same, so it
seems to make little difference in practice.
A formal statement of the main result is as follows:

Result 3
Suppose p grows with n following a sequence p, p,,...such that In(N)/p, +c as n »
where N = mn and c is a positive constant. Then if F satisfies (2.3) we have

lim sup |Hp o(x)— [1 - exp{— (x/ x§*"*}]| = 0, (6.16)

n—x x20

where k* is the value of k solving (6.14). (As written this result takes m as fixed, but it also
holds even when m grows with n following some sequence m;, m,,....)
To summarize, the key approximation is

H, .(x)=1-exp{ - (x/x¥N*"}, x=0 6.17)

where 17 is given by (6.9) with (6.6), and k* is the critical value of k which solves (6.14) and
(6.15) with ¢ = In(N)/p.

For convenience we list the first few values of y(r) when K; =1+ j/2:

roy(r) r y(r)

0 0 5 3.15
1 0405 6 3.95
2 0981 7 478
3 165 8 562
4 238 9 648

To conclude this section we mention one other result of [ 15] which is less important for applications
but may be of independent interest. Consider a formal limiting operation as p » <, N - o,
(In N)/p - c. Then the critical k* is the value of k defined by (6.14) and it may be shown with a
little algebra that

Y xs > exp[ - (c + T}_jl‘ ln(K,-))/k*]. (6.18)

Note that the r.h.s. of (6.18) depends only on ¢ and may be written u(c). Furthermore, the
Weibull shape parameter pk* in (6.17) tends to infinity so that the variance of the distribution
tends to zero. Thus, as N — and p - @ such that (In N)/p = c, the strength of the material
approaches a limiting value which may be written as xgu(c).

Of course, the limiting operation described here never takes place physically but the result
does suggest that, when N and p are both large, the strength of the material is close to
x5 ((In N)/p). It now seems that, as a working approximation for strength, this result is of less
importance than (6.17), but it is still important for the light it casts on the *'size effect.” The
reader is referred to[15] for discussion of this concept. A later example illustrates this result.

7. COMPARISON OF THE THREE ANALYSIS AND
CONCLUDING COMMENTS
Analysis I is the most accurate of the three analyses, since it leads to very close
approximations to HJ,(x) with tight bounds on the error of approximation. The problem of
choosing k does not really arise, because the sequence of approximations (as k incregses) can be
shown theoretically to converge to a limit, and numerically it is known that this limit is
approached very fast. For large values of n, the approximation is given by (3.7) or in a virtually
equivalent form by
H,,(x)=1-{1- W)™, x=0, 7.1

where W(x) is defined as the limit of W™)(x) as k increases.
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The key result of Analysis II is (5.3) which (writing N = mn) we rewrite here in the form
H,, a(x)=1—-exp{~ mnd(x/x5)*}, x=0 (7.2

where the value of k must be chosen as indicated shortly. Comparing (7.2) with (7.1), it is seen
that this is equivalent to replacing W(x) by the Weibull distribution function

FH(x) = 1 -exp{ - di(x/x,)*}, x20. (1.3

The problem of choosing k in (7.2) is much more subtle. Formula (7.2) is based on a lower
tail approximation, and it was seen in Section 5 that the rate of approach to the limit as n grows
large gets slower as k increases. The practical conclusion which we must note here is that if k is
chosen too large then (7.2) fails. Of course, if k is chosen too small then (7.2) also fails simply
because HX! (x) is not then a good approximation to H,, .(x). This makes it clear that it is
necessary to choose the right value of k if there is any chance for (7.2) to be a good
approximation. ‘

Two practical approaches have been suggested for resolving this question. The first is to use the
critical value of k given by Analysis III. This seems a very reasonable thing to do. The second
approach is motivated by the observation that, in the circumstances when (7.2) fails, it always does
so in the direction of overestimating the true probability of failure. This motivates the Weibull
envelope procedure, introduced in Section 4, whereby #*\(x) from (7.3) is replaced by

W(x) = min #19(x), x20. (1.4)
kz1
The resulting approximation is then
Hpa (x)=1-[1- W)™, x=0. (1.5)

Analysis III produces two results worth studying. The first fs the approximation (6.17) which
(writing N = mn) we rewrite here as

H,.(x)=1-exp{- mndy+(x/x5)"?}, x =20 (7.6)

with the critical k* being the value of k solving (6.14) and (6.15) with ¢ = (In(mn))/p. The second
result is that when mn and p are both large, the strength of the material is approximately x;
times the r.h.s. of (6.18), which we denote u(c), with ¢ = (In(mn))/p.

A comparison of these approximations is made in Fig. 4. We have plotted the charac-
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Fig. 4. Characteristic distribution funqtion W(x) for material strength and associated approximations. Also
shown is the strength distribution for a fibrous material with 10° fiber elements
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teristic distribution function W(x) and the approximating functions % l(x) on Weibull coor-
dinates. Also shown (right-hand scale) are the estimates (7.1) and (7.2) for the case mn = 10°,
These curves are obtained from W(x) and #*(x) respectively by shifting the left-hand vertical
scale downward an amount In(mn) = 13.82.

It is apparent from Fig. 4 that there is no single value of k for which #{)(x) provides a good
approximation to W(x) over the whole range of x. It may be seen, however, that F(x) is
nearly tangential to W(x) over the region where k is critical, and that W(x) defined by (7.4)
provides a very reasonable approximation to W(x) over almost the whole range. For the case
mn = 10°, the median value of x (H,, ,(x) = 0.5) lies in the region where Wx) = #%(x), and we
conclude that k = § is critical for this mn and p = 5.

Thus it appears that the Weibull approximation defined by (7.2) with k=35 is a good
approximation for mn = 10°%, p = 5. This distribution has a shape parameter of 25 as compared
with § for a single fiber so that the variability in strength of the fibrous material is greatly reduced in
comparison with single fibers. This is an important observation in itself which is consistent with
experimental evidence. (A study of past and recent experimental evidence.is to be published
elsewhere.)

A table of values for d,, needed for Analysis Il is given in Table 1 for the case p = 5. A more
detailed table, covering different values of p, is in[14]. Numerical comparisons of W(x) with the
envelope estimate W(x) of (7.4) show that the approximation is a good one and also that W(x)
appears to overestimate W(x), so that the approximation of Analysis II is conservative.

We now turn to a comparison of Analyses Il and III. The main approximation of Analysis Il is
(7.6) which (disregarding the choice of k = k* for the moment) is the same as Analysis Il with d,
replacing d,. In Table 1 we have given values of d, and d; and also the values of d; " and d; "*.
The latter values are tabulated because the scale constants defined in (5.2) and (6.9) are
proportional to them. It may be seen that the third and fourth columns are very close. In fact, the
error that arises on Fig. 4, when d; is replaced by d, in (7.3), is within graphical resolution.

The other issue of Analysis III is the choice of k. However, for mn =10°% p =5 we find
(in(mn))/p = 2.763 and y(4) = 2.38 <2.763 < y(5) = 3.15. Thus the critical value of k as deter-
mined by Analysis 11l is k* =5, i.e. the same value as was found graphically from Fig. 4. This
appears to be true generally so that the predictions of Analyses II and III appear to be the same
for all practical purposes. This is fortunate because Analysis III was derived on the assumption
of p = = but the preceeding conclusions imply that the assumptions of Analysis III are justified
even for p=5.

The other prediction of Analysis III is that the strength is approximately x u(In(mn)/p). This
curve is also plotted in Fig. 4 using the In(mn) scale on the extreme right. Although the
approximation is still a reasonable one, it is not as good as the others and apparently
overestimates the true material strength, i.e. the approximation is non-conservative.

Boundary effects when n is small

The approximations (7.1), (7.2) and (7.3) are valid whenever n is large regardless of the value
of m. When n is small but m large the approximations are still good but some modification is
needed to account for boundary effects in the small bundles. These boundary effects arise
because the mathematical analysis does not take account of physical changes near the boundary
which become appreciable when (n — k* + 1)/n is significantly less than one.

When using Analysis I, numerical experience indicates that formula (7.1) should be replaced
by

Hp W (x)=1-(1=-W&)™ (@)™, x20 (.7

say for k* = n = 3k*, where k* is the critical k of Analysis III and 7(x) is given by (3.4). For
even smaller values of n, i.e. n <k* one should use

Hy n(x) = 1-[1- W@ (#"x)™, x 20, (7.8)

where #!"}(x) is defined in association with (3.1). In fact, (7.8) also actually works better than
(7.7) even for n = k* especially in the lower tail of H, ,(x).
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When using Analysis II, the corresponding change in (7.2) is

Hp o(x) = 1—exp{— m(n ~ k + 1)d; (x/x5)*}
=1-[1- F))™1 - F¥x)] %Y, x =0 a9

where k may be taken as k* of Analysis III, when k* =n =3k*, or as n when n<k*. A
comparison of (7.9) with (7.7) in view of (7.5) suggests a “Weibull envelope” approximation

H, ()= 1-[1- WEI™(#)" x20 (7.10)
where W(x) was defined earlier by (7.4) and where

#(x)= l:lzlrll exp{(k ~ 1)dy(x/x5)*}, x = 0. (7.11)

(Actually (7.10) differs slightly from (7.9) but only at a few points x where it is still within
graphical resolution on Weibull probability paper.)

Numerical calculations have been performed which show that #(x) - 1 and its approxnmauon
#(x)~ 1 are very close numerically especially in the load range x of interest. The proximity is

roughly the same as that shown on Fig. 4 for W(x) and its approximation W(x), and it improves
dramatically as p increases. For x/K, < x < x3/Ki_; we see that (m(x))” — 1 = m(k — 1)d,(x/x;)}*
so that (m(x))™ becomes significant in (7.10) only when m(k — 1} approaches mn in magnitude.

Concluding comments

For parameter values in the range of interest the three analyses yield results which are in
remarkable agreement. The Weibull approximation (7.6), using (6.6) for d, and either of the
suggested rules for determining k*, yields very good results in spite of the fact that very little
labor is involved in calculating the key constants.

Future work will concentrate on extending these results to fatigue failure and different
bundle geometries and load-sharing rules. The favorable comparisons made in this paper are
important because at the present time only Analyses II and III show real prospects of being
extended to these situations. Analysis II has been extended to fatigue failure in{19], and work is
in progress on extending Analyses 1I and III to bundles with hexagonal geometry under local
load-sharing.
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APPENDIX

Consider a single bundle and suppose the n fiber elements are labeled consecutively i=1,2,...,n. The event of
k-failure requires that there is some group of k consecutive fibers which fails under the given load. In order to obtain the
distribution for this, it is convenient to consider fibers i,i+1,...,i+k~1 (for some i between | and n -k +1) as an
isolated bundle of k fibers. The probability of failure of this small bundle is simply Gi(x). In general, we may define the
event A, forn=1,1Sisn-k+1astheevent that fibers i, i +1,...,i+k— 1,in a bundle of size n, fail when considered
in this manner. Note that A, really depends on both k and the applied load x, but this is suppressed in the notation. We
then have the approximation

G¥=P{UA.} (AD)

where the union of the A, ; is taken over 1 =i = n-k+ 1. The reader may be asking why (A1) is only an approximation
and not an exact result. This question is important because it must be answered in order to see why (Al) really is a good
approximation. The point is that k-failure may occur without any of the events A, occurring. through the linking-up of
two sequences of failures to produce a single sequence which is actually longer than k.

To make the point clear, consider k = 2. Suppose fibers 1, 2, 3 have strengths X, satisfying

Xigx, Kd<Xs2Kax, Xasx

Fibers 1 and 2 do not fail when considered as a bundie of only two fibers because fiber 2 can withstand the overioad from
fiber 1. Hence A, ; does not occur. Similarly A, > does not occur. But it is clear that, when the three fibers are considered
together, they all fail because fiber 2 fails under the combined overloads from fibers I and 3. In this case, we have 2-failure
occurring, but only through the combined weaknesses of three fibers.

In general. we use the term “Type II failure sequences” for a sequence of consecutive fibers, of length strictly greater
than &, which fail under their combined loads but such that no A, , occurs within the sequence. If A, ; denotes the event
that fibers i,i+1..... i+ k-1 are contained within some Type Il failure sequence. then (Al) may be modified to give the
equality

GW¥x)= P{U(A., UA. )} x20. (AY)
In view of the inequalities
P{UA.}=Gx) s P{UA.}+ P{UAL) (A3)

it will suffice. to justify (A1), to show that the events A, ; have negligible probability in comparison with the events A, . as
x - 0. We return to this point shortly.

The next problem is to obtain an approximation to the probability of A, ,, i.e.. to Gi{x). We showed in Section 4 that as
x - () the approximation

Gr(x) ~ dilxixs)"

holds. By similar arguments for G,(x)= F(x) and G(x)=2F(K:x)F(x)- F(x) we see under the previously stated
assumptions on F that

P{A,i} = Gu(x) ~ dulxxs)”. x>0 (A4)

holds for k = 1,2.3. We claim that, for each k 2 I, there exists d, = di{p) such that (A4) holds. An intuitive “proof" of this
is as follows. We found that Gi(x) is a sum of products of three factors of the form F(vx)— F(ux) where v and u are load
concentration factors (possibly | or 0). In general, it is easy to visualize how this argument may be extended to obtain
Gi(x) as a sum of products of k such factors. Using the approximation F(y) ~ (y/xs)® as y — 0 we obtain (Ad). A rigorous
proof of (A4) by the method of induction is given in[16).

Equation (A4) gives an approximation for P{A, ;} which is valid when the applied load x is small. The next step is to
apply this to obtain the probability of the union of the events A, ;. We approach this problem by first making the artificial
(and incorrect) assumption that the events A, (fori=1,..., n -k +1) are independent. Under this assumption we have

P{ UA..,,}= I_P{ njn.l}z I_HP{A"II}
=1=[1- Gt
where A, denotes the complement of A.. Now in the region of interest x is very small and so is G,(x). Thus we have

1= Gi(x) ~ exp{ — Gi(x)} ~ exp{ - di(x/x5)"}
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using (A4). This yields the approximation

P{UAw}~1-exp{~(n—k+ Ddi(x/x5)*)
=1-exp{- (x/x¥ e} as x 2 0 (AS)

where x¥,,, is defined by (5.2).

Now (AS) is identical to (5.1) but it was derived under the incorrect assumption that the A,.'s are independent.
However, it is possible to argue that, in the limit as x =0, the events {A, ., 1SiSn-k+1} are asymptotically
independent. The argument depends on a theorem by Watson[17], and to use the theorem one must show that

P{AsjlAL} 2 0as x 0 (A6)

for j# i The difficulty arises when |j-i|<k because then the events A,; and A,; overlap in the bundle, and are
dependent because they share common fibers. Now

P{A, j|Asi} = P{As; N A, ) P{A, ;) (A7)

where |j - if <k, and the event A,; N A,; requires that af least k + 1 fibers fail under loads which can at most be Ki_ix.
Thus by arguments similar to those which led to (A4) we have

P{An; N Au} < didxlxs)**" .

for all 0 = x < x; where di and x, are positive constants whose precise values need not concern us. From {A8) and (A4) we
arrive at

0< P{A, j|As i} <(diddi)x/xs)°

for all x sufficiently small, thus verifying (A6). We see that even if fibers i, i+1,... i+ k-1 are known to have failed
under the event A, ;, the chance that fibers i+1,i+2,...,i+k have also failed by the neighboring event A, ., is
negligible when the load x is small in spite of the fact that k — | of the fibers are common to both events!

We now return to the issue of Type II failure sequences and the events A, . Now each A, ; (i=1.2,....n—k+1)
requires the failure of at least k + 1 adjacent fibers. By arguments similar to those which led to (Ad), we have as x — 0 the
approximation

P{AL)~ dixixs)**™, x20
for some constant d§ whose precise value need not concern us. Combined with (A4), We have
P{A.i}~ (di/d)xIxs)’ P{An.}.

Now di and di are constants while (x/x;)® =0 as x = 0. Thus, as x = 0, the events A, ; are of negligible probability
compared with the events A, An easy extension of this argument (combined with (AS)) shows that P{U; A, } is
negligible compared with P{U; A,.;} as x - 0. In view of (A3) this shows that the approximation (A1) is justified when x is
small. Finally (A1) together with (AS) justify the approximation (5.1).

Lastly, we consider the reasons why the Weibull distribution on the r.h.s. of (5.1) improves as an approximation to
G%¥(x) as n grows large and k remains fixed. The key is to return to the derivation of (A5) and notice that [1 ~ z/n])" —» ¢”*
as n — o« for any real z so that the exponential form arises naturally as n grows large. Second, the median of this Weibull
distribution is xs[di(n — k + 1)/In(2)] " and decreases as n — « in proportion to n~"*. Thus as n grows large the load
range of interest for x moves into the region where the lower tails for the probabilities of the events A, ; and A, ; dominate
in importance.

The above ideas apply to a single bundle when n grows large with k held fixed and are developed more rigorously
in{13, 14). These ideas are easily extended to the fibrous material where there are a total of 2m(n -k + 1) events to
consider, each of the form An; or A;; Then H¥\(x) still has the form of the r.h.s. of (A2) but the union is over
m(n -k +1) such events. Furthermore, events in different bundles are automatically independent thus simplifying the
analysis, the final result of which is (5.3) and Result 2.



